THE CHINESE UNIVERSITY OF HONG KONG
 DEPARTMENT OF MATHEMATICS
 MATH2010C/D Advanced Calculus 2019-2020
 Solution to Assignment 1

1. In $\triangle A B C, \overrightarrow{A B}=4 \mathbf{i}+4 \mathbf{j}, \overrightarrow{A C}=-12 \mathbf{i}+8 \mathbf{j}$ and points P, Q lie on $B C$ such that $B P: P Q: Q C=1: 2: 1$.

Find $\angle P A Q$.
Ans: $\overrightarrow{A P}=\frac{3}{4} \overrightarrow{A B}+\frac{1}{4} \overrightarrow{A C}=\frac{3}{4}(4 \mathbf{i}+4 \mathbf{j})+\frac{1}{4}(-12 \mathbf{i}+8 \mathbf{j})=5 \mathbf{j}$.
Similarly, $\overrightarrow{A Q}=\frac{1}{4} \overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C}=\frac{1}{4}(4 \mathbf{i}+4 \mathbf{j})+\frac{3}{4}(-12 \mathbf{i}+8 \mathbf{j})=-8 \mathbf{i}+7 \mathbf{j}$.
Therefore, $\cos \angle P A Q=\frac{\overrightarrow{A P} \cdot \overrightarrow{A Q}}{|\overrightarrow{A P}||\overrightarrow{A Q}|}=\frac{35}{5 \sqrt{113}}$ and $\angle P A Q=\cos ^{-1}\left(\frac{7}{\sqrt{113}}\right)$.
2. Let $A=(4,3,6), B=(-2,0,8)$ and $C=(1,5,0)$ be points in \mathbb{R}^{3}.

Show that $\triangle A B C$ is a right-angled triangle.
Ans: $\overrightarrow{A B}=(-2,0,8)-(4,3,6)=(-6,-3,2)$ and $\overrightarrow{A C}=(1,5,0)-(4,3,6)=(-3,2,-6)$.
Then, $\overrightarrow{A B} \cdot \overrightarrow{A C}=(-6)(-3)+(-3)(2)+(2)(-6)=0$ and so $A B \perp A C$.
Therefore, $\triangle A B C$ is a right-angled triangle.
3. Suppose that $\mathbf{m}, \mathbf{n} \in \mathbb{R}^{n}$, where $|\mathbf{m}|=2,|\mathbf{n}|=1$ and the angle between \mathbf{m} and \mathbf{n} is $\frac{2 \pi}{3}$.

If $\mathbf{p}=3 \mathbf{m}+4 \mathbf{n}$ and $\mathbf{q}=2 \mathbf{m}-\mathbf{n}$, find
(a) $\mathbf{m} \cdot \mathbf{n}$,
(b) $|\mathbf{p}|$ and $|\mathbf{q}|$,
(c) the area of the parallelogram spanned by \mathbf{p} and \mathbf{q}.

Ans:
(a) $\mathbf{m} \cdot \mathbf{n}=|\mathbf{m}||\mathbf{n}| \cos \left(\frac{2 \pi}{3}\right)=-1$
(b) $|\mathbf{p}|^{2}=\mathbf{p} \cdot \mathbf{p}=(3 \mathbf{m}+4 \mathbf{n}) \cdot(3 \mathbf{m}+4 \mathbf{n})=9|\mathbf{m}|^{2}+24 \mathbf{m} \cdot \mathbf{n}+16|\mathbf{n}|^{2}=28$. Therefore, $|\mathbf{p}|=2 \sqrt{7}$.

Similarly, $|\mathbf{q}|^{2}=\mathbf{q} \cdot \mathbf{q}=(2 \mathbf{m}-\mathbf{n}) \cdot(2 \mathbf{m}-\mathbf{n})=4|\mathbf{m}|^{2}-4 \mathbf{m} \cdot \mathbf{n}+|\mathbf{n}|^{2}=21$. Therefore, $|\mathbf{q}|=\sqrt{21}$.
(c) We have $\mathbf{p} \cdot \mathbf{q}=(3 \mathbf{m}+4 \mathbf{n}) \cdot(2 \mathbf{m}-\mathbf{n})=15$.

Let the angle between \mathbf{p} and \mathbf{q} be θ. Then $\cos \theta=\frac{\mathbf{p} \cdot \mathbf{q}}{|\mathbf{p} \| \mathbf{q}|}=\frac{15}{14 \sqrt{3}}$. Therefore, $\sin \theta=\frac{11}{14}$.
The area of the parallelogram spanned by \mathbf{p} and \mathbf{q} is $|\mathbf{p} \| \mathbf{q}| \sin \theta=11 \sqrt{3}$.
4. Suppose that A, B and C are points on \mathbb{R}^{2} such that $O A B C$ is a kite with $O A=O C$ and $A B=C B$. Let $\overrightarrow{O A}$, $\overrightarrow{O B}$ and $\overrightarrow{O C}$ be \mathbf{a}, \mathbf{b} and \mathbf{c} respectively.
(a) Express $\overrightarrow{A B}$ and $\overrightarrow{C B}$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}.
(b) By considering $A B=C B$, show that $\mathbf{b} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{c}$.
(c) Hence, show that $O B \perp A C$.

Ans:
(a) $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ and $\overrightarrow{C B}=\mathbf{b}-\mathbf{c}$
(b) Since $A B=C B$, we have

$$
\begin{aligned}
|\mathbf{b}-\mathbf{a}|^{2} & =|\mathbf{b}-\mathbf{c}|^{2} \\
(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{b}-\mathbf{a}) & =(\mathbf{b}-\mathbf{c}) \cdot(\mathbf{b}-\mathbf{c}) \\
|\mathbf{b}|^{2}-2 \mathbf{b} \cdot \mathbf{a}+|\mathbf{a}|^{2} & =|\mathbf{b}|^{2}-2 \mathbf{b} \cdot \mathbf{c}+|\mathbf{c}|^{2} \\
\mathbf{b} \cdot \mathbf{a} & =\mathbf{b} \cdot \mathbf{c}
\end{aligned}
$$

Note that $O A=O C$, and so $|\mathbf{a}|=|\mathbf{c}|$.
(c) Form (b), we have $\mathbf{b} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{c}$ and so $\mathbf{b} \cdot(\mathbf{c}-\mathbf{a})=0$, i.e. $\overrightarrow{O B} \cdot \overrightarrow{A C}=0$.

Therefore, $O B \perp A C$.
5. Let $\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}, \overrightarrow{O B}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}, \overrightarrow{O C}=5 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Find the volume of tetrahedron $O A B C$.
(Hint: Its volume equals to $\frac{1}{6} \times$ volume of parallelotope spanned by $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$.)
(c) By (a) and (b), find the distance from O to $\triangle A B C$.

Ans:
(a) Firstly, we have $\overrightarrow{A B}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\overrightarrow{A C}=4 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$. Then,

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 1 \\
4 & 1 & -1
\end{array}\right|=-\mathbf{i}+2 \mathbf{k}
$$

(b) $(\overrightarrow{O A} \times \overrightarrow{O B}) \cdot \overrightarrow{O C}=\left|\begin{array}{ccc}1 & 2 & 1 \\ 3 & 1 & 2 \\ 5 & 1 & 3\end{array}\right|=1$.

Therefore, the volume of tetrahedron $O A B C=\frac{1}{6} \times|(\overrightarrow{O A} \times \overrightarrow{O B}) \cdot \overrightarrow{O C}|=\frac{1}{6}$.
(c) From (a), the area of $\triangle A B C=\frac{1}{2} \times|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{\sqrt{5}}{2}$.

Let h be the distance from O to $\triangle A B C$.
Note that h is just the height of the tetrahedron $O A B C$ with base $\triangle A B C$.
Then, $\frac{1}{3} \times \frac{\sqrt{5}}{2} \times h=\frac{1}{6}$ and so $h=\frac{1}{\sqrt{5}}$.
6. Given $A=(3,-1,3), B=(0,7,-2)$ and $C=(-9,3,-3)$ be three points in \mathbb{R}^{3}.
(a) Find the coordinates of a point D if $A C, B D$ are perpendicular and $A D, B C$ are parallel.
(b) i. Find $\angle D C B$.
ii. Show that A, B, C, D are coplanar (i.e. lying on a same plane) and find the equation of the plane which contains them.
iii. Show that $A B C D$ is a square and find the area of it.
(c) $V A B C D$ is a pyramid with base $A B C D$. If $V=(12,-14,-12)$,
i. find the volume of the pyramid;
ii. find the angle between the plane $V A B$ and the base.

Ans:

(a) Note that $\overrightarrow{A C}=-12 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}, \overrightarrow{B D}=\overrightarrow{O D}-(7 \mathbf{j}-2 \mathbf{k}), \overrightarrow{A D}=\overrightarrow{O D}-(3 \mathbf{i}-\mathbf{j}+3 \mathbf{k})$ and $\overrightarrow{B C}=-9 \mathbf{i}-4 \mathbf{j}-\mathbf{k}$.

Since $A D$ and $B C$ are parallel, $\overrightarrow{A D}=\lambda \overrightarrow{B C}$ for some $\lambda \in \mathbb{R}$. Then,

$$
\overrightarrow{O D}=(3 \mathbf{i}-\mathbf{j}+3 \mathbf{k})+\lambda(-9 \mathbf{i}-4 \mathbf{j}-\mathbf{k})=(3-9 \lambda) \mathbf{i}-(1+4 \lambda) \mathbf{j}+(3-\lambda) \mathbf{k}
$$

Since $A C$ and $B D$ are perpendicular, $\overrightarrow{A C} \cdot \overrightarrow{B D}=0$. Then,

$$
\begin{aligned}
(-12 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}) \cdot \overrightarrow{O D}-40 & =0 \\
-12(3-9 \lambda)-4(1+4 \lambda)-6(3-\lambda)-40 & =0 \\
\lambda & =1
\end{aligned}
$$

Therefore, $\overrightarrow{O D}=-6 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}$, i.e. $D=(-6,-5,2)$.
(b)
i. $\angle D C B=\cos ^{-1}\left(\frac{\overrightarrow{C D} \cdot \overrightarrow{C B}}{|\overrightarrow{C D}||\overrightarrow{C B}|}\right)=\cos ^{-1}(0)=\frac{\pi}{2}$.
ii. Direct computation shows that $\overrightarrow{C A} \cdot(\overrightarrow{C D} \times \overrightarrow{C B})=0$ which implies A, B, C, D are coplanar.

Also, $\overrightarrow{C D} \times \overrightarrow{C B}$ gives a normal of the plane containing A, B, C, D. The equation of the plane is $2 x-3 y-6 z=-9$.
iii. Note that $\overrightarrow{A B}=\overrightarrow{D C}=-3 \mathbf{i}+8 \mathbf{j}-5 \mathbf{k}$ and $\overrightarrow{A D}=\overrightarrow{B C}=-9 \mathbf{i}-4 \mathbf{j}-\mathbf{k}$. Therefore, $|\overrightarrow{A B}|=|\overrightarrow{D C}|=$ $|\overrightarrow{A D}|=|\overrightarrow{B C}|=7 \sqrt{2}$. Furthermore, $\overrightarrow{A B} \cdot \overrightarrow{A D}=0$ which shows that $\angle B A D=\frac{\pi}{2}$. Therefore, $A B C D$ is a square with area $=(7 \sqrt{2})^{2}=98$.
(c) i. Let \hat{n} be the unit vector of $\overrightarrow{C D} \times \overrightarrow{C B}$. Then, $\hat{n}=\frac{1}{7}(-2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k})$. Then, the height of the pyramid is $|\overrightarrow{B V} \cdot \hat{n}|=21$. Therefore, the volume of the pyramid is $\frac{1}{3} \times 98 \times 21=686$.
ii. Let $\hat{m}=\frac{\overrightarrow{B V} \times \overrightarrow{B A}}{|\overrightarrow{B V} \times \overrightarrow{B A}|}=-\frac{1}{7 \sqrt{886}}(185 \mathbf{i}+90 \mathbf{j}+33 \mathbf{k})$. The angle between the plane $V A B$ and the base $A B C D=$ the angle between \hat{m} and $\hat{n}=\cos ^{-1}\left(-\sqrt{\frac{2}{443}}\right)$
7. Suppose that $L_{1}: x+1=\frac{y-2}{-2}=\frac{z+3}{2}$ and $L_{2}: \frac{x-1}{-1}=\frac{y+2}{2}=\frac{z-6}{3}$ are two straight lines.
(a) Show that L_{1} and L_{2} intersect each other at one point and find the point of intersection.
(b) Find the acute angle between L_{1} and L_{2}.
(c) Find the equation of plane containing L_{1} and L_{2}.

Ans:

(a) Rewrite the equations of L_{1} and L_{2} in parametric forms:

$$
\begin{array}{ll}
L_{1}: & x=-1+s, y=2-2 s, z=-3+2 s \\
L_{2}: & x=1-t, y=-2+2 t, z=6+3 t
\end{array}
$$

where $s, t \in \mathbb{R}$.
By setting $-1+s=1-t, 2-2 s=-2+2 s$ and $-3+2 s=-6+3 t$, we have the solution $s=3$ and $t=-1$.
Therefore, L_{1} and L_{2} intersects at $(2,-4,3)$.
(b) $\mathbf{d}_{1}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{d}_{2}=-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ are direction vectors of L_{1} and L_{2} respectively.

Therefore, the angle between L_{1} and $L_{2}=\cos ^{-1}\left(\frac{\mathbf{d}_{1} \cdot \mathbf{d}_{2}}{\left|\mathbf{d}_{1}\right|\left|\mathbf{d}_{2}\right|}\right)=\cos ^{-1}\left(\frac{1}{3 \sqrt{14}}\right)$.
(c) $\mathbf{d}_{1} \times \mathbf{d}_{2}=-10 \mathbf{i}-5 \mathbf{j}$ is a normal of the required plane.

Since $(2,-4,3)$ is a point lying on the required plane, the required equation is $2 x+y=0$.
8. Let $\Pi_{1}: x-2 y+2 z=0$ and $\Pi_{2}: 3 x+y+2 z=4$ be two planes and let $P(1,2,-1)$ be a point in \mathbb{R}^{3}.
(a) Find the angle between Π_{1} and Π_{2}.
(b) Find the equation of the line passing through the point P which is parallel to the intersection line of the planes Π_{1} and Π_{2}.

Ans:

(a) Note that $\mathbf{n}_{1}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{n}_{2}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ are normals of Π_{1} and Π_{2} respectively.

The angle between Π_{1} and $\Pi_{2}=$ The angle between \mathbf{n}_{1} and $\mathbf{n}_{2}=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right)=\cos ^{-1}\left(\frac{5}{3 \sqrt{14}}\right)$.
(b) Note that

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 2 \\
3 & 1 & 2
\end{array}\right|=-6 \mathbf{i}+4 \mathbf{j}+7 \mathbf{k}
$$

gives a direction vector of the intersection line of Π_{1} and Π_{2}, and hence gives a direction vector of the required line.
The required equation: $\frac{x-1}{-6}=\frac{y-2}{4}=\frac{z+1}{7}$.
9. Let $A=(1,1,0), B=(0,1,1)$ and $C=(1,-1,1)$ be three points in \mathbb{R}^{3} and let Π be the plane containing A, B and C.
(a) Find the equation of the plane Π.
(b) Suppose that

$$
L: \frac{x-1}{5}=\frac{y-1}{6}=z
$$

is a straight line passing through the point A and L^{\prime} is the projection of L on Π.
Find the equation of L^{\prime}.

Ans:

(a) $\overrightarrow{A B}=-\mathbf{i}+\mathbf{k}$ and $\overrightarrow{A C}=-2 \mathbf{j}+\mathbf{k}$. Then,

$$
\mathbf{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 0 & 1 \\
0 & -2 & 1
\end{array}\right|=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}
$$

gives a normal vector of the plane Π.
Let the equation of Π be $2 x+y+2 z+D=0$.
Note that $A=(1,1,0)$ is lying on Π, so $3+D=0$ and $D=-3$.
The equation of Π is $2 x+y+2 z-3=0$.
(b) $\mathbf{a}=5 \mathbf{i}+6 \mathbf{j}+\mathbf{k}$ is a direction vector of L. Then,

$$
\mathbf{a}-\operatorname{proj}_{\mathbf{n}}(\mathbf{a})=(5 \mathbf{i}+6 \mathbf{j}+\mathbf{k})-\frac{(5 \mathbf{i}+6 \mathbf{j}+\mathbf{k}) \cdot(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})}{|2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}|^{2}}(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})=\mathbf{i}+4 \mathbf{j}-3 \mathbf{k}
$$

gives a direction vector of L^{\prime}. Therefore, the equation of L^{\prime} is

$$
L^{\prime}: x-1=\frac{y-1}{4}=-\frac{z}{3} .
$$

10. (a) Let Π be a plane in \mathbb{R}^{3} given by the equation $A x+B y+C z+D=0$ and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a fixed point.

Show that the perpendicular distance between Π and P is $\left|\frac{A x_{0}+B y_{0}+C z_{0}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$.
(b) Let $\Pi_{1}: 2 x-2 y+z-4=0$ and $\Pi_{2}: x+2 y-2 z=0$ be two planes in \mathbb{R}^{3}.

Find the equation of plane(s) passing through the intersection lines of plane bisecting the planes Π_{1} and Π_{2}.
(Hint: Suppose that \mathbf{p} is a point lying on the required plane, then the distance between \mathbf{p} and Π_{1} equals to the distance between \mathbf{p} and Π_{2}. Draw a picture to see why there are two such planes.)

Ans:

(a) Note that $\vec{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ is normal to Π. Let $Q=\left(x_{1}, y_{1}, z_{1}\right)$ be a fixed point on Π.

Since Q lies on Π, we have $A x_{1}+B y_{1}+C z_{1}=-D$.
Let θ be the angle between \vec{n} and $\overrightarrow{P Q}$. Then, the perpendicular distance between Π and P

(Note: $\left.\left|-\left(A x_{0}+B y_{0}+C z_{0}+D\right)\right|=\left|A x_{0}+B y_{0}+C z_{0}+D\right|.\right)$
(b) Let $P=(x, y, z)$ be a point on the required plane.

Then, the distance between P and Π_{1} equals to the distance between P and Π_{2}.

$$
\begin{aligned}
\left|\frac{2 x-2 y+z-4}{\sqrt{2^{2}+(-2)^{2}+1^{2}}}\right| & =\left|\frac{x+2 y-2 z}{\sqrt{1^{2}+2^{2}+(-2)^{2}}}\right| \\
2 x-2 y+z-4 & = \pm(x+2 y-2 z)
\end{aligned}
$$

$x-4 y+3 z-4=0$ and $3 x-z-4=0$ are two possible planes passing through the intersection lines of plane bisecting the planes Π_{1} and Π_{2}.

